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Abstract—Near-duplicate detection is important when dealing
with large, noisy databases in data mining tasks. In this
paper, we present the results of applying the Rank distance
and the Smith-Waterman distance, along with more popular
string similarity measures such as the Levenshtein distance,
together with a disjoint set data structure, for the problem of
near-duplicate detection.

Index Terms—Near-duplicate detection, string similarity
measures, database, data mining.

I. I NTRODUCTION

A. Motivation

T HE concept ofnear-duplicatesbelongs to the larger class
of problems known asknowledge discoveryand data

mining, that is identifying consistent patterns in large scale
data bases of any nature. Any two chunks of text that have
possibly different syntactic structure, but identical or very
similar semantics, are said to be near duplicates. During the
last decade, largely due to low cost storage capacity, the
volume of stored data increased at amassing rates; thus, the
size of useful and available datasets for almost any task has
become very large, prompting the need of scalable methods.
Many datasets are noisy, in the very specific sense of having
redundant data in the form of identical or nearly identical
entries. In an interview for The Metropolitan Corporate
Counsel (see http://www.metrocorpcounsel.com/articles/7757/
near-duplicates-elephant-document-review-room), Warwick
Sharp, vice-president of Equivio Ltd., a company offering
information on retrieval services to law firms with huge
legal document databases, noted that 20 to 30 percent of
data they work with are actually near-duplicates, and this is
after identical duplicate elimination. The most extreme case
they handled was made up of 45% near-duplicates. Today it
is estimated that around 7% of websites are approximately
duplicates of one another, and their number is growing
rapidly. On the one hand, near-duplicates have the effect
of artificially enlarging the dataset and therefore slowing
down any processing; on the other hand, the small variation
between them can contain additional information so that, by
merging them, we obtain an entry with more information than
any of the original near-duplicates on their own. Therefore,
the key problems regarding near-duplicates are identification
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(detection) and aggregation. It is probable that different
methods are needed to treat different types of data: for
example, small texts, large texts, or images.

The work [1] identified the following domains that can
benefit from efficient near-duplicate detection and aggregation
methods.

– Web mirrors identification
– Clustering for related documents
– Data extraction
– Plagiarism detection
– Spam detection
– Duplicates in domain-specific corpora

These are by no means exhaustive; the problem finds
applications in countless fields.

When looking for duplicates in domain-specific corpora,
the goal is to identify near-duplicates arising out of revisions,
modifications, copying or merger of documents, etc. Example
datasets for such an application are TREC benchmarks,
Reuters news articles, and Citeseer data (duplicate scientific
article citations). See [1, Conrad and Schriber (22)] for a
case-study involving legal documents at a law firm. [1, Manber
(42)] initiated an investigation into identification of similar
files in a file system, with applications in saving disk space.
[1, Review (2009)] identifies a few sample situations when we
might deem two text documents as being duplicates of each
other:

– Files with a few different words - widespread form of
near-duplicates

– Files with the same content but different formatting - for
instance, the documents might contain the same text, but
dissimilar fonts, bold type or italics

– Files with the same content but different file type - for
instance, Microsoft Word and PDF versions of the same
file.

For short texts such as text messages, [2] indicated the
fundamental differences that must be taken into account
when doing term weighting, for example. For short messages,
larger differences need to be tolerated, and as much semantic
information needs to be taken into account. This technique is
also relevant for title matching or for comparing short fields
from a database. The literature contains various methods, each
more suited for specific applications. Depending on the domain
and of the specific goals, certain methods are better than
others.

A new algorithm could be tailored to a particular task,
improving in the measures that have more weight for that
particular application, while possibly scoring less from other
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points of view: for example, a duplicate detection algorithm
for handheld devices is subject to heavy computational
and memory limits, so some accuracy needs to be traded.
Alternatively, an innovative and general algorithm could
improve the state of the art performance in multiple
applications, without trading off any resources.

B. State of the art

The state of the art methods in near-duplicate detection
cover a broad spectrum of applications and are based
sometimes on radically different background techniques. We
will first review the web crawling and mining domain and its
particular applications. [1] made two research contributions
in developing a near-duplicate detection system intended for
a multi-billion page repository. Initially, they demonstrated
the appropriateness of Charikar’s fingerprinting technique [3]
for the objective. Locality-sensitive hashing methods have
been used in the context of Map-Reduce systems in order
to efficiently do approximate nearest neighbour searches in
parallel, on big data: this method is taught at Stanford in
their class CS246: Mining Massive Data Sets1. The major
advantage of it is the speed and scalability, while the drawback
of this method is the lack of room for tweaking. [4] from
Google developed a two-step duplicate identification method
that first finds candidates using Charikar’s fingerprinting
method, followed by refining the query response using
similarity measures on the tractable subsets identified by the
first step. (US Pat. 8015162). [5] proposed a novel algorithm
called I-Match, which they have shown to perform well on
multiple datasets, differing in size, document length and degree
of duplication. This is step forward, but its drawbacks are
that it relies on term frequencies, which can mislead when
compared to a ranking-based approach. Secondly, it requires
a lexicon, and therefore domain knowledge and language
assumptions. For this reason, the system cannot be used out
of the box for different problems, but its performance might
be better after appropriate tweaking. Another key discussion in
duplicate identification is whether to assume the transitivity of
the duplicate relation. Granted, this reduces the number of total
comparisons needing to be made. Hashing-based detectors use
this fact in order to say that objects assigned to the same
bucket are duplicates. In practice, however, because we are
facing noisy near duplicates, such a procedure can propagate
and augment errors.

On the problem of near-duplicate image detection, [6]
applied compact data structure to region-based image retrieval
using EMD (Earth Mover’s Distance) and compared their
results positively with previous systems. [7] have applied the
neuroscience-inspired Visual Attention Similarity Measure in
order to give more weight to regions of interest. A previous,
but nonetheless efficient system was given by Chum et al.,
using locality-sensitive hashing on local descriptors (SIFT),
with tf-idf -like weighting schemes, which suggests a unified

1http://cs246.stanford.edu

approach based on deep learning, that would work on text
and images. An extension of this method is used by Gao
and Tang, wherein they initially compare a subset of local
features from subsets of two images, followed by crossed
near-neighbour searches which should succeed if the images
are near-duplicates (US Pat. App 12576236). Furthermore,
recent developments in dictionary learning gave way to
powerful applications in image classification, denoising,
inpainting and object recognition (the Willow team at INRIA
[8]). These methods can prove very useful as feature learners
for near-duplicate image detection and we intend to leverage
them in our system. Andrew Ng and his team at Stanford have
successfully applied this kind of unsupervised feature learning
and sparse coding, traditionally used in image processing for
text processing tasks [9], which encourages the idea that the
features for our system can be learned automatically from
domain specific data, and thus work efficiently on different
types of data.

C. Our approach

As far as we are aware, there is no research combining
deep / unsupervised feature learning with near-duplicate
identification and detection. After building a tractable
feature-representation of the data, any duplicate detection
algorithm needs a notion of similarity. At the moment we
sticked with text features, but tried out different metrics. There
is a number of metrics used to define similarity [10], around
which duplicate detection algorithms are built.

Identification of an adequate metric for determining the
similarity of two objects is an intensely studied problem
in linguistic and in social sciences. The numerous possible
applications (from establishing text paternity, measuring the
similarity between languages, text categorization [11]) place
this problem in the top of open problems in domains like
computational linguistics.

This paper focuses on finding duplicates represented as
textual strings. The similarity between two strings is generally
measured by Levenshtein (edit) distance or variants. In
this paper we use other two distances (Rank distance
and Smith-Waterman distance) and compare them. We will
introduce them in the following part, along with the union-find
disjoint set data structure used to manage the data and optimize
the number of comparisons.

Section 3 is dedicated to experimental results, and the final
section presents our conclusions and our intended future work.

II. PRELIMINARIES

A. Rank distance

The rank-distance metric was introduced by Dinu in
[12] and was successful used in various domains as
natural languages similarities, authorship identification, text
categorization, bioinformatics, determining user influence
[13], etc. To measure rank distance between two strings, we
use the following strategy: we scan (from left to right ) both
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strings and for each letter from the first string we count the
number of elements between its position in first string and the
position of its first occurrence in the second string. Finally, we
sum all these scores and obtain the rank distance. Clearly, the
rank distance gives a score zero only to letters which are in
the same position in both strings, as Hamming distance does
(we recall that Hamming distance is the number of positions
where two strings of the same length differ). On the other
hand, an important aspect is that the reduced sensitivity of the
rank distance w.r. to deletions and insertions is of paramount
importance, since it allows us to make use ofad hoc extensions
to arbitrary strings, such as do not affect its low computational
complexity,

When rank distance is restricted to permutations (or full
rankings), it is anordinal distance tightly related to the
so-calledSpearman’s footrule.

Let us go back to strings. Let us choose a finite alphabet,
say{A,C,G, T} as relevant for DNA strings, and two strings
on that alphabet, which for the moment will be constrained
to be a permutation of each other. E.g. take the two strings
of length 6, AACGTT and CTGATA. To compute rank
distance, we proceed as follows: number the occurrences of
repeated letters in increasing order to obtainA1A2C1G1T1T2

and C1T1G1A1T2A2. Now, proceed as follows: in the first
sequenceA1 is in position 1, while it is in position 4 in
the second sequence, and so the difference is 3; compute the
difference in positions for all letters and sum them. In this case
the differences are 3, 4, 2, 1, 3, 1 and so the distance is 14.
Even if the computation of the rank distance as based directly
on its definition may appear to be quadratic, two algorithms
which take it back to linear complexity are presented in [14].

Let u = x1x2 . . . xn and v = y1y2 . . . ym be two strings
of lengthsn and m, respectively. For an elementxi ∈ u we
define itsorder or rank by ord(xi|u) = i: we stress that the
rank of xi is its position in the string, counted from the left
to the right,after indexing, so that for example the secondT
in the stringCTGATA has rank5.

Note that some (indexed) occurrences appear in both strings,
while some other areunmatched, i.e. they appear only in one
of the two strings. In definition 1 the last two summations
refer to these unmatched occurrences. More precisely, the first
summation onx ∈ u ∩ v refers to occurrencesx which are
common to both stringsu and v, the second summation on
x ∈ u\v refers to occurrencesx which appear inu but not in
v, while the third summation onx ∈ v\u refers to occurrences
x which appear inv but not inu.

Definition 1. The rank distance between two stringsu and v
is given by:

∆(u, v) =
∑

x∈u∩v

|ord(x|u)− ord(x|v)|+
∑

x∈u\v

ord(x|u)

+
∑

x∈v\u

ord(x|v). (1)

Example 1. Let w1 = abbab andw2 = abbbac be two strings.
Their corresponding indexed strings will be:w1 = a1b1b2a2b3

and w2 = a1b1b2b3a2c1, respectively. So,∆(w1, w2) =
∆(w1, w2) = 8

Remark 1. The ad hoc nature of the rank distance resides
in the last two summations in(1), where one compensates for
unmatched letters, i.e. indexed letters which appear only in
one of the two strings.

B. Smith-Waterman Distance

The Smith-Waterman algorithm was introduced in [15],
beeing a variation of Needleman-Wunsch algorithm. Since
it is a dynamic programming algorithm, it has the desirable
property that it is guaranteed to find the optimal local
alignment with respect to the scoring system being used
(which includes the substitution matrix and the gap-scoring
scheme). The main difference to the Needleman-Wunsch
algorithm is that negative scoring matrix cells are set to zero,
which renders the (thus positively scoring) local alignments
visible. Backtracking starts at the highest scoring matrix cell
and proceeds until a cell with score zero is encountered,
yielding the highest scoring local alignment

For this application, it is not necessary to build string
alignement seeing as we are only interested in the final score,
so we will exclude this portion for minimizing the execution
time. We considered delta =1 (the cost value for a gap), the
matched score =2 and the unmatched score =−1.

C. Union-Find Algorithm

Under the assumption that theis-a-duplicate-of relation
is transitive, by building the similarity graph (thresholded
according to table I), the problem of near-duplicate detection
amounts to finding the connected components of the resulting
graph. This way we can avoid unnecessary comparisons
between nodes that are already connected, and reduce
computations for a memory cost.

The Union-Find structure was proposed for the task of
finding and storing connected components in a graph, for the
specific task of near-duplicate entry detection, in [16]. This
method is based on disjoint sets with a distinguished item
in each, called the representative. An implementation of this
well-known data structure was used in our experiment.

III. E XPERIMENTAL RESULTS

A. Datasets

In this section we will test the near-duplicate text document
detection algorithms discussed above on two data bases:
one representing a collection of IT products, and the other
containing bibliographic entries.

The first database was put together from different online
sources 2 to which near duplicates (containing noise in

2Data were collected from catalogues such as http://www.cdw.com/,
http://www.itproducts.com/ and http://www.streetdirectory.com/.
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Fig. 1. Results of the first two algorithms on the artificially distorted database,
along with the ground truth
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Fig. 2. Results of all similarity algorithms on the artificially distorted database

the form of character insertion, deletion, substitution and
transposition) were added.

The second database represents a real-world, undistorted
bibliographic collection in BibTeX format, from which we
extracted only the title and the author names, in order to
lighten the workload given our assumption that the most errors
occur in these fields. The source of the data is “A Collection of
Computer Science Bibliographies” [17]. Since this collection
has over 600,000 entries, we filtered only the ones from the

TABLE I
THE ALGORITHMS USED, AND THE THRESHOLD THAT DEFINES

NEAR-MATCHES, WHEN COMPARING STRINGSa AND b, OF LENGTH na

AND nb RESPECTIVELY

Metric Perfect matching Near matching
Rank distance d = 0 d ≤ nanb

2
)

Smith-Waterman d = 2max(na, nb) d ≥ min(na, nb)

Levenshtein d = 0 d ≤ max(na,nb)
2

Similar-text p = 100% p ≥ 50%
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Fig. 3. Results of all similarity algorithms on the bibliography database

TABLE II
DUPLICATES DISTRIBUTION IN ARTIFICIALLY DISTORTED DATA

Group size Groups number Input number Percent
1 1720 1720 62.77%
2 274 548 20.00%
3 96 288 10.51%
4 26 104 3.79%
5 16 80 2.91%

Total 2132 2740 100%

“Planning and Scheduling” category, leaving only 3436 entries
such as

{author: "Andrew G. Barto and S. J.
Bradtke and Satinder P.Singh", title:
"Learning to Act Using Real Time Dynamic
Programming" }.

A sample duplicate entry of this would be

{author: "Andrew Barto, J. S. Bradtke and
S. P. Singh", title: "Learning to Act
Using Realtime Dynamic Programming" }.

We sought out to investigate the problem of recognizing
near duplicates by employing two basic tools: the Union-Find
algorithm of grouping data efficiently and the algorithms
proposed above. We also looked at the efficiency and the
correctness of these algorithms. In what follows we will
present the algorithms and the results.

B. Results

The distribution for the duplicates in the artificially distorted
database is shown in table II.

The results of the algorithms on the artificial database are
displayed in figures 1 and 2 while the results on the real
database are shown in figure 3. The figures are distribution
plots, the y-value at the positionx = k, k ∈ {1, 2, ...} showing
the number of documents that can be captured in groups ofk.
In other words, fork = 1 it shows the number of documents
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that the algorithm thinks have no duplicates, fork = 2 it
shows the documents that can be grouped in duplicate pairs,
while for k = 3 they can be grouped in triples. Note that the
points should add up to the total size of the database.

The similar text function used for comparison is the text
similarity algorithm from [18], as implemented in the PHP
programming language’s standard library. It is included as
reference because of its accesibility, due to this fact.

In the case of the artificially generated noisy database,
we have access to the ground truth. From 1 we can see
that the results found by Rank distance are closer to the
real distribution of duplicates than the ones found by the
Smith-Waterman distance.

For the bibliographic entry database, we assume that the
ground truth probability of duplication is lower than in the
artificial case. No algorithm found more than 3 duplicate
entries for the same information. However under visual
inspection, the identified duplicates look correct, confirming
the precision of the methods. The Rank distance again seems
to have a slower decay rate than the other methods, which can
be interpreted as higher recall in the tail of the distribution,
assuming a fixed precision.

IV. CONCLUSIONS

Our methods for verifying existence of aproximate
duplicates exhibit improvement over the previous work in
this field. The use of the Union- Find algorithm for grouping
the entries significantly reduces the number of comparissons,
hightening the efficiency of the general agorithm and its run
time. Although it is relyies on the existence of transitivity for
the similarity reltion, we have seen that no entries were lost
and no errors occured in the grouping of objects.

Until now, the majority of studies on the subject of duplicate
detection were based on classic distances, such as Hamming
or Levenshtein, yet the results were not always correct.
The use of the Smith-Waterman algorithm for strings of
characters representing words may seem incertain, taking into
consideration that DNA chains are not in the same domain as
the one choosen here, yet the results of our experiments show
a good performance, an excellent precision and an runtime
comparable with classic metrics. Rank distance is usually used
for computing distance between ranks, but its adaptation to
character strings proved to be fast aqnd precise. We note that
there are yet many other metrics and algorithms, which may
at first seem unsuitable for a certain problem, but through
proper study may prove to be a new solution for a classical
problem, possibly even better, faster, and more precise. In our
case, the Rank algorithm proved to be more precise than the
Smith-Waterman algorithm, being the one closest to the real
situation of the duplicates in our datasets.

As future work, we plan to extend these methods in such
a way as to minimize the number of comparisons needed,
using fingerprinting techniques, as well as to extend them in
an unified manner for different data types (images, long text
fields, etc.)
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